Minimizing Hexapod Robot Foot Deviations Using Multilayer Perceptron

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foot design for a hexapod walking robot

This article describes the process of development of the robotic foot for the six-legged walking robot Messor. In order to allow the robot to negotiate uneven surfaces and to walk on a compliant ground, the foot includes the sensing device which provides information on contact forces between the foot and the ground. At first, the foot with single-axis force measurement unit is described. Next, ...

متن کامل

Auto-kernel using multilayer perceptron

This work presents a constructive method to train the multilayer perceptron layer after layer successively and to accomplish the kernel used in the support vector machine. Data in different classes will be trained to map to distant points in each layer. This will ease the mapping of the next layer. A perfect mapping kernel can be accomplished successively. Those distant mapped points can be dis...

متن کامل

Feature Selection Using a Multilayer Perceptron

The problem of selecting the best set of features for target recognition using a multilayer perceptron is addressed in this paper. A technique has been developed which analyzes the weights in a multilayer perceptron to determine which features the network finds important and which are unimportant. A brief introduction to the use of multilayer perceptrons for classification and the training rule...

متن کامل

Manifold Construction Using the Multilayer Perceptron

We present a training method which adjusts the weights of the MLP (Multilayer Perceptron) to preserve the distance invariance in a low dimensional space. We apply visualization techniques to display the detailed representations of the trained neurons.

متن کامل

Using Background Knowledge in Multilayer Perceptron Learning

In this contribution we present a method for constraining the learning of a Multi-Layer Perceptron network with background knowledge. The algorithms presented here can be used to train the partial derivatives of the network to match given numerical values or to minimize a given cost function. Thus the mapping produced by the network can be constrained according to known input-output models, mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Robotic Systems

سال: 2015

ISSN: 1729-8806

DOI: 10.5772/61675